Flow and Transport Equations

نویسندگان

  • Zhangxin Chen
  • Guanren Huan
  • Yuanle Ma
چکیده

Mathematical models of petroleum reservoirs have been utilized since the late 1800s. A mathematical model consists of a set of equations that describe the flow of fluids in a petroleum reservoir, together with an appropriate set of boundary and/or initial conditions. This chapter is devoted to the development of such a model. Fluid motion in a petroleum reservoir is governed by the conservation of mass, momentum, and energy. In the simulation of flow in the reservoir, the momentum equation is given in the form of Darcy’s law (Darcy, 1856). Derived empirically, this law indicates a linear relationship between the fluid velocity relative to the solid and the pressure head gradient. Its theoretical basis was provided by, e.g., Whitaker (1966); also see the books by Bear (1972) and Scheidegger (1974). The present chapter reviews some models that are known to be of practical importance. There are several books available on fluid flow in porous media. The books by Muskat (1937; 1949) deal with the mechanics of fluid flow, the one by Collins (1961) is concerned with the practical and theoretical bases of petroleum reservoir engineering, and the one by Bear (1972) treats the dynamics and statics of fluids. The books by Peaceman (1977) and Aziz and Settari (1979) (also see Mattax and Dalton, 1990) present the application of finite difference methods to fluid flow in porous media. While the book by Chavent and Jaffré (1986) discusses finite element methods, the discussion is very brief, and most of their book is devoted to the mathematical formulation of models. The proceedings edited by Ewing (1983), Wheeler (1995), and Chen et al. (2000A) contain papers on finite elements for flow and transport problems. There are also books available on ground water hydrology; see Polubarinova-Kochina (1962), Wang and Anderson (1982), and Helmig (1997), for example. The material presented in this chapter is very condensed. We do not attempt to derive differential equations that govern the flow and transport of fluids in porous media, but rather we review these equations to introduce the terminology and notation used throughout this book. The chapter is organized as follows. We consider the single phase flow of a fluid in a porous medium in Section 2.2. While this book concentrates on an ordinary porous

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sediment Transport in Unsteady Flow Conditions

Sediment transport under unsteady flow condition is studied experimentally. In the first step, sediment transport under different steady flow conditions was measured and an empirical equation was derived for its calculation. In the next step, two continuous and three stepwise hydrographs were generated in the flume, and their sediment transport rate was measured. The continuous hydrographs were...

متن کامل

Sequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow

A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...

متن کامل

Water Management in the Cathode Side of a PEM Fuel Cell

A one dimensional isothermal mathematical modeling of cathode side of a Proton Exchange Membrane (PEM) fuel cell is developed for the water management problem. Water transport is investigated in both cathode Gas Diffusion Layer (GDL) and membrane through solving appropriate equations for fluid flow and mass transport in GDL and water transport within the membrane. The gaseous mixture flowing in...

متن کامل

Prediction of Sediment Transport Capacity in Rivers Using Quasi Two-Dimensional Mathematical Model

Sediment rating curve is an essential factor for many river engineering subjects and computations such as dredging, design of storage dams, river intakes design and sand mining management. Although, this curve is established using simultaneous measurement of flow and sediment transport discharges, however, due to lack of reliable data during flood events, it has limited reliability in flood con...

متن کامل

Performance Evaluation of a Curved Type Vane Separator at Different Plate Spacings in the Range of 25 to 35mm Using Numerical Simulation

In this paper, the turbulent air droplet flow inside a single passage of a curved type vane separator has been studied numerically. The simulation is based on the Eulerian - Lagrangian method. For turbulent air flow calculations, a computer code was developed to solve the Reynolds Averaged Navier Stokes (RANS) equations together with the equations of Reynolds Stress Transport Model (RSTM) o...

متن کامل

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006